

Later Prehistoric Finds Group

Issue 16

Winter 2020-2021

The Peebles Hoard: 3
A new Late Bronze
Age discovery from
Scotland
Emily A Freeman &
Matthew G Knight

From discovery to
display: next steps
in the journey of
the Boughton
Malherbe hoard
Sophia Adams

Initial findings on
unidentified
moustache objects
using PAS data
Jonathan P. Davey

Are textile tools
not special?
Reviewing
depositional
histories from Iron
Age Britain
Jennifer Beamer

Book reviews and
announcements

LPFG 2020
Conference
summary
Helen Chittock

Obituaries

Call for Finds

A hoard-filled
Happy New Year

Call for
Contributions

Welcome to the latest edition of the LPFG Newsletter. In this edition we have a fascinating report on the recently discovered Peebles Bronze Age hoard, courtesy of Emily Freeman and Matt Knight. Sophia Adams has an exciting announcement about another Bronze Age hoard, this time from the opposite end of the country, whilst Jonathan Davey shares his research on curious group of Bronze Age fittings. In Iron Age studies we have more news from Jennifer Beamer regarding her work on textile production in Iron Age Wessex. LPFG member Andy Chapman brings us news about his latest publication, whilst Sophia Adams and Alison Casaly provide reviews of other recent publications. Helen Chittock provides a summary of our 2020 online conference, and there is news regarding colleagues who we have recently lost. A call for finds and a festive feature from Sophia Adams wrap up this season's edition.

Some of the horse-related trapping from the Peebles hoard. More details on page 3.

Welcome

The Later Prehistoric Finds Group was established in 2013, and welcomes anyone with an interest in prehistoric artefacts, especially small finds from the Bronze and Iron Ages. We host an annual conference and publish a biannual newsletter, in addition to a series of datasheets providing short accessible introductions to different classes of objects. Members receive all our new publications via email and you can download back issues for free on our website, <https://laterprehistoricfinds.com/>

Membership is currently free; if you would like to join the group, please e-mail LaterPrehistoricFindsGroup@gmail.com.

*

To submit articles, notes or announcements for inclusion in the LPFG newsletter, please e-mail Andrew Lamb at lpfgnews@outlook.com. Guidelines are available on the website, but please feel free to e-mail with any questions.

Who we are at the LPFG

Chair: Helen Chittock

Deputy Chair: Matt Knight

Treasurer: Meredith Laing

Membership Secretary: George Prew

Newsletter Editor: Andrew Lamb

Datasheet Editor: Leanne Demay

Social Media Editor: Lewis Ferrero

Website Editor: Michael Marshall

Committee members: Sophie Adams, Anna Booth, Julia Farley, Emily Freeman, Yvonne Inall, Tess Machling, Steph Smith, John Smythe and Peter Walker

The Peebles Hoard: A new Late Bronze Age discovery from Scotland

Emily A. Freeman & Matthew G. Knight, Treasure Trove Unit & National Museums Scotland

In June 2020, a hoard of Late Bronze Age horse-related gear, wagon/cart fittings and a sword was found by a metal detectorist near Peebles, Scottish Borders (Figure 1). This amazing discovery included not only finely crafted and decorated bronze objects, but also a complex array of organic remains, including straps, pieces of wood and the remains of a scabbard on the sword. These items probably date to c.1000–900 BC, around the time or shortly after the first domesticated horses were appearing in Britain.

Twenty-one bronze objects were initially recovered by the finder, Mariusz Stépien. However, as he continued to receive strong signals from the area, and realising he had possibly found something of great historical importance, Mr Stépien stopped digging and contacted the Treasure Trove Unit. Within days, the Unit was on site with a view to excavate the remaining artefacts, with the help of archaeologists and conservators from National Museums Scotland.

Over the course of three weeks, excavation revealed a complex deposit of artefacts in situ in a pit amongst large stones, within an apparent round structure (Figure 2). The remains of organic material (preliminarily interpreted as leather straps) were found linking some of the artefacts, including the harness fittings, along with tiny bronze studs which decorated the straps. In many cases we were able to trace these straps and assess how seemingly separate fittings were in fact related to each other and interlinked. Due to the intricacies and fragility of the finds, it quickly became clear that it would not be a straightforward excavation. Removing the hoard object-by-object would not be feasible without losing a large amount of data which could be gleaned from the complexity of the organic material and the related stratification of the artefacts. Therefore, 3D models were produced of the hoard in situ and the decision was taken to block lift the hoard, so that it can be excavated in laboratory conditions. Once fully excavated, the hoard will be allocated through the Treasure Trove process to an accredited Scottish Museum. A 3D model of the hoard pre-excavation can be freely accessed by the following link: <https://sketchfab.com/3d-models/late-bronze-age-hoard-from-nr-peebles-scotland-ed73de963c194d4eb76ad0fd43559df7>

Figure 1 - Image of horse-related gear found by Mariusz Stépien.
Crown Copyright.

Although the block has yet to be fully excavated, we are able to draw some initial conclusions about the structure of the deposit. The horse harness and wagon/cart fittings appear to have been placed into the pit first, whilst the sword within its scabbard was probably the last thing to enter the ground, carefully placed on top of the other material (Figure 3). Moreover, the interlinked horse gear suggests that the bronze fittings were not removed from the horse harness prior to burial. Instead, the whole harness was placed within the pit still fully articulated, information we would have lost without such a thorough excavation. We hope the excellent preservation will allow for reconstruction in the future. The bronze cart/wagon fittings, by contrast, appear to have been removed from the associated vehicle before deposition; indeed, we have no indications of vehicular components such as axes or wheels.

Figure 2 - Fraser Hunter (L) and Tanja Romankiewcz (R) excavating the site Crown Copyright.

Another exciting aspect of the hoard is the possible evidence for a 'rattle pendant'. These objects comprise interlinked bronze loops and discs which would have hung from the horse harness, creating a unique sound as the horse moved. Although not fully excavated, it appears such an object is emerging from the Peebles hoard (Figure 4). If this is indeed a rattle pendant, this will be the first such example known from Scotland, and only the third within Britain (the other two having been found within the large hoard of Late Bronze Age horse gear from Parc-y-Meirch in Wales (Sheppard 1941)). Importantly, the main distribution of this artefact type is around southern Scandinavia and the southern Baltic (Thrane 1958; Scott 2019, 27), and as such we may speculate how the communities settled around Peebles were connected with those living on the continent during the Late Bronze Age. This question is particularly pertinent as the only other Scottish hoard comprising primarily horse and wagon/cart fittings (with two socketed axeheads) was discovered at Horsehope Craig during the 19th century, only a few miles from the Peebles hoard (Piggott 1953). Objects in that hoard also showed signs of continental contact and exchange (*ibid*).

Figure 3 - Top-view of the hoard, taken from 3D model. Crown Office and National Museums Scotland Copyright

Finally, being able to excavate the hoard provided a rare opportunity to assess the archaeological context of the hoard. This is rare as most hoards which are reported to Treasure Trove have been disturbed by agricultural equipment. In this instance, however, the large stones forming the upper stratigraphy of the site had made the field unsuitable for ploughing and had thus kept the hoard mostly intact and undisturbed until today. Furthermore, excavation revealed that the hoard pit had been dug within the terminal of an inner wall slot or gully of a round structure, and at least two phases of outer wall, including postholes, were revealed (Figure 5). This suggests that the deposition of the hoard could relate to a symbolic closure of the structure, with at least the inner wall removed before the hoard was deposited. Such interpretations will no doubt change during further study of the site.

Figure 4 - Possible rattle pendant in situ. Crown Copyright.

With such excellent context and preservation, the discovery of the Peebles hoards opens up a wealth of potential for future study, not only for understanding the hoard in its immediate context, but also for revisiting and recontextualising Late Bronze Age horse gear in Britain and its insular and international connections. There is still much work to be done, including its allocation to a museum in Scotland. One clear conclusion that can be drawn at this time is that

responsible detecting has resulted in a find that will have a significant impact on our understanding of Late Bronze Age people, their hoards, and their technologies.

Figure 5 - Image of the post holes. Crown Copyright.

Acknowledgements

This hoard was excavated during the unusual and difficult circumstances of 2020. For that reason, there are a great number of people to thank for their help with excavation, including Fraser Hunter, Hugo Anderson-Whymark, Mary Davis, Jane Clark, Tanja Romankiewicz, Ben Prime and Niall Sharples. We are also grateful to Peeblesshire Archaeological Society for their assistance, particularly Trevor Cowie, Stephen Scott and Neil Crawford. Lastly excavation would not have been possible without the generous accommodation of the landowners, and the great support offered by the metal-detectorists, Mariusz Stępień (finder), Dariusz Gucwa, Tomasz Lipowski and their friends and family.

References

PIGGOTT, S. 1953. A Late Bronze Age hoard from Peeblesshire. *Proceedings of the Society of Antiquaries of Scotland* **87**(1952-3), 175-86.

SCOTT B.G. 2019. Some notes on horse-riding in the Irish Later Bronze Age. *The Journal of Irish Archaeology* **28**, 17-48.

SHEPPARD, T. 1941. The Parc-y-meirch hoard, St George parish, Denbighshire. *Archaeologia Cambrensis* **96**, 1–10.

THRANE H. 1958. The rattle pendants from the Parc-y-Meirch hoard, Wales. *Proceedings of the Prehistoric Society* **24**, 221–7.

Emily Freeman is Manager of the Treasure Trove Unit in Scotland. Twitter: @TTUScotland

Matthew Knight is a Senior Curator of Prehistory, responsible for the Chalcolithic and Bronze Age collections at National Museums Scotland. He is also Deputy Chair of the LPFG. Twitter: @mgknight24

From discovery to display: Next steps in the journey of the Boughton Malherbe hoard.

Sophia Adams, SUERC, University of Glasgow

The quantity of Bronze Age metal hoards being discovered every year is astounding. In 2018 alone, 41 were reported to the Portable Antiquities Scheme (Lewis 2019). Each find is a great opportunity to learn more about the later prehistoric past and compare new data with older discoveries. Yet the process from moment of discovery to display is lengthy, with many hurdles along the way, including financial. The current display of the Havering Hoard at the Museum of London is a rare example, not only because the hoard was discovered during archaeological excavation but also because it has taken only two years to go from discovery to display (via analysis, conservation and reporting) (Peachey et al. 2020). Even then, many of the objects still have soil in their sockets and work on the excavation report is ongoing.

The Boughton Malherbe hoard from Kent has followed a more typical, lengthy route that illustrates the challenges faced by local museums in relation to local finds. This is the largest Late Bronze Age mixed object hoard found in Kent and is dated to the final part of the period c.850–750 BC. It weighs approximately 64 kg and contains 344 pieces (both complete objects and fragments), from whole axes to parts of sword blades (Figure 1) (Adams 2017). The hoard was discovered in 2011 by metal detectorists and reported to the Portable Antiquities Scheme (PAS). The PAS undertook a site survey and recorded the pit that had contained the hoard, supported by the Kent County Council Heritage team (PAS ID: KENT-15A293 www.finds.org.uk).

Once the Boughton Malherbe Hoard was declared treasure, Maidstone Museum had to seek funds to acquire the finds and prepare them for safe storage and display. These applications were driven and supported by local public interest and international academic research (including Matthew et al. 2012; Matthews 2013; Brandherm and Moskal-del Hoyo 2014). Even then, it has been a prolonged process from acquisition to display. Grants were obtained from the Art Fund, the MLA/V&A Purchase Grant Fund and the Headley Trust to purchase the hoard and from the Allen Grove Fund, Kent Archaeological Society, for cataloguing and preparing the finds for storage. The latter grant also supported some initial research on the revised record of the hoard (Adams 2017).

Figure 1 - A selection of objects from the Boughton Malherbe Late Bronze Age hoard, pre-conservation.
©Sophia Adams.

Up to this point the objects have only been studied in their 'as found' condition: some are coated in soil, others filled with soil. Without cleaning we are missing so much of the detail of these objects: decorative features, manufacturing evidence, use wear and signs of manipulation. Again it is local interest that has made it possible for us to put together a project to conserve the hoard thanks to The William and Edith Oldham Charitable Trust who responded to my note in *Archaeologia Cantiana* (Adams 2017), that the hoard would benefit from further research. As a result, we have commissioned Kent-based conservator Dana Goodburn-Brown to fully conserve two thirds of the hoard and stabilise the remainder (Figure 2). We will be carrying out further research on the cleaned objects and our results will be presented in a dedicated exhibition at Maidstone Museum in 2023. Alongside this work, we are undertaking public engagement activities, including the creation of a piece of performance art by Lunatraktors which will be shared online in June 2021. National and local lockdowns have delayed the start of the conservation work so it was with great joy that the first batch of objects reached the conservation lab in September, via a socially distanced handover. This batch consisted of axes and a rare single end-winged adze. These items were chosen first because of the similarities

*Figure 2 - A selection of objects from the Boughton Malherbe Late Bronze Age hoard, pre-conservation.
©Sophia Adams.*

across the objects and the complex combinations of cavities, decorative features and anticipated use-wear features which make them a good test bed for the rest of the hoard. This batch also tied in nicely with some of Dana's earliest metals research on SEM analysis of worked metal surfaces which included Bronze Age axes (Goodburn-Brown 1988). The careful examination, cleaning and stabilising work by Dana and her assistant Marie Le Saux has brought instant reward (Figure 3). Preserved under the soil coating are incredibly clear marks from manufacture, use and destruction of these objects: many visible to the naked eye but others enhanced by viewing under the microscope (Figure 4).

Figure 3 - Dana and Marie at work in the conservation lab, 2020. ©Marie Le Saux and Sophia Adams.

The project has further benefitted from the input of Dana's husband, Damian Goodburn, who is a renowned specialist in prehistoric wood: both in terms of archaeological finds and experimental work. Damian has talked to us about his experience of using bronze axes and the tool marks found on contemporary wooden timbers, structures and boats. We have a short recording available on You Tube of Damian talking about the tree species that were present in south-eastern England during the Bronze Age (<https://youtu.be/2IdKQKu2tm4>). I plan to add more dynamic video content to my channel as work progresses sharing both the conservation, research and analytical processes. Links to these can be found at <https://bronzeagehoards.com>. Digital recording and online meetings have been paramount in making this project work during the pandemic. Furthermore, the digital recordings provide us with a great set of images, notes, sound clips and videos that can be worked into the exhibition at the museum in 2023.

While we wait for the opportunity to hold face-to-face public events and workshops, I am disseminating the progress and results in different ways, commencing with a Boughton Malherbe themed advent calendar (for those who like a less serious approach). Here's hoping we can share these fascinating, beautifully conserved finds with you in person in the not-too-distant future.

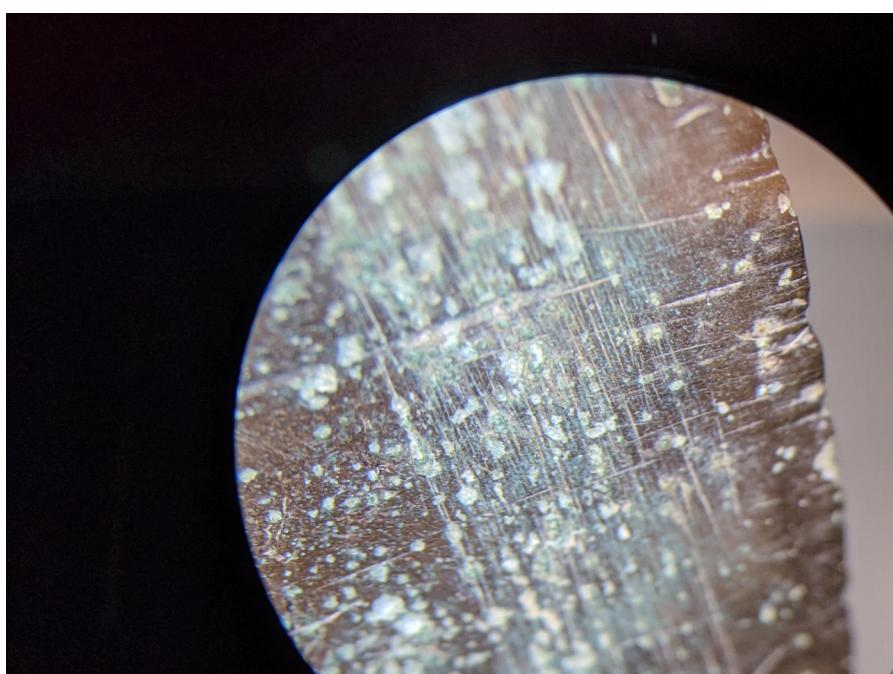


Figure 4 - Microscope photograph of one of the conserved axe blade edges from the Boughton Malherbe Hoard. ©Dana Goodburn-Brown.

References

ADAMS, S. 2017. The Contents and Context of the Boughton Malherbe Late Bronze Age Hoard. *Archaeologia Cantiana* **138**, 37-64.

BRANDHERM, D. and MOSKAL-DEL HOYO, M. 2014, 'Both Sides Now': The Carp's Tongue Complex Revisited. *The Antiquaries Journal* **94**, 1-47.

GOODBURN-BROWN, D. 1988. Metalworking Tools and Workshop Practices: Interpretation of Worked Metal Surfaces Via Silicone Rubber Moulds. In Olsen, S. (ed.) *Scanning Electron Microscopy in Archaeology*. BAR International Series **452**, 55-64. Oxford: BAR.

LEWIS, M (ed.) 2019. *The Portable Antiquities Scheme Annual Report 2018*. London: The British Museum.

MATTHEWS, S. 2013. The Boughton Malherbe hoard, Kent: un dépôt du groupe de l'épée en langue de carpe Français en Angleterre? *Bulletin de l'Association pour la Promotion des Recherches sur l'Age du Bronze Bulletin* **11**, 59–60.

MATTHEWS, S., JACKSON, J., RAPOSO, M. and LEEDHAM, J. 2012. Prehistoric French Scrap Dealers in Kent? The Boughton Malherbe Bronze Age hoard. *Current Archaeology* **267**, 32–5

PEACHEY, A., GREAVES, P., ADAMS, S. and SUMNALL, K. 2020. The Havering Hoard: Bronze Sunset Over the Marshes. *British Archaeology Magazine* **172**: 34-41

Sophia Adams is a research archaeologist based in Kent. She focuses on the Bronze Age and Iron Age in Europe, particularly metalwork, metalworking and chronology. Recent publications include:

Webley, L., Adams, S. and Brück, J. 2020. *The Social Context of Technology: non-ferrous metalworking in later prehistoric Britain and Ireland*. Prehistoric Society Research Paper 11. Oxford: Oxbow.

sophia.adams@glasgow.ac.uk Twitter: @TactileArchaeo

Initial Findings on Unidentified Moustache Objects Using Portable Antiquities Scheme Data

Jonathan P. Davey, University of Exeter

During the final year of my undergraduate degree I undertook a placement at the Portable Antiquities Scheme (PAS) under the supervision of Laura Burnett, then Finds Liaison Officer for Somerset. We discussed a mysterious set of presumed Bronze Age objects, known as unidentified moustache-shaped objects (UMOs). There are 60 items in this category on the PAS database (Table 1). All but one (which was badly corroded) were examined for my undergraduate dissertation which created a typology for these objects while also attempting to narrow down possible uses, as well as location data. The following is an overview of this data and avenues for further research.

Typology

Prior to my research no study existed on these objects. Drawing on papers for approaching typologies (Adams and Adams 1991; Boozer 2015; Fowler 2017), I opted to mainly sort the UMOs by form, due to the very different designs found. There appear to be six types: Dali (Figure 1A), Pincer (1B), Kitchener (1C), Headphone (1D) Shell (1E, F & G) and Mussel (1H), the Headphone and Mussel types are possibly re-purposed or 'odd' examples, with only two Headphone and one Mussel example available. The 20 Shell types and one Mussel type I have classed as single types, due to them only having one wing, whilst the other 38 examples are classed as double types. The names given to the UMOs was chosen so they would stick in the mind better and would be easily identifiable. Pincers appear most often (19) in the double types, followed by Kitchener (11), Dali (6) and Headphone (2).

Figure 1 - The four double UMO types; A-Dali, B-Pincer, C-Kitchener D-Headphone (HAMP-6F4C45, NMGW-AF1FCC & NARC-6A4546 & HAMP-E8A481), three examples of single shell types (WAW-83E1E3, SFE-76AB6 & SUSS-3AEC48) and the Mussel type (SOM-7D864D).

What is a UMO?

On first inspection, these items could appear to be unrelated, due to the wide range of designs. Though after grouping them a definite link between them all became clear. Figure 2 shows annotated examples of typical double and single UMOs. Doubles require two wings that taper to a point, a hole or socket and evidence of incised lines, while singles need a hole or socket for mounting or attaching to an object, a tapered tip and evidence of incised lines. Due to pre- and post-depositional wear, incised lines and tips can be destroyed, meaning some UMOs may not have all the typical elements.

Of the 59 definite UMOs, all but four have incised line decoration, with three of those being corroded, possibly obscuring the decoration. All have a hole in the presumed underside, six of which penetrate throughout the object, while the rest are one-sided. This suggests certain 'criteria' could have been used when designing these items depending on their intended use.

Possible Usage and Regional Distribution

Dating of these objects has been extremely difficult, as PAS finds are generally from metal detectorists, with only a few finds from dateable contexts. Dating is reliant on the Salisbury hoard, which had one or two UMOs, but the various items in the hoard have a date range of over 1,000 years, suggesting many were ancient before deposition (Stead 1998).

PAS Number	Length (mm)	Width (mm)	Weight (g)	County (Area)	Evidence of incised lines? (Yes/No)	Single (S) or double (D)	Type
BERK-2DE004	18.61	10.45	3.1	West Berkshire (South East)	Y	S	Shell
BERK-3F46D5	34.66	18.1	29.5	West Berkshire (South East)	Y	D	Dali
BERK-403617	29.62	12.82	8.16	Oxfordshire (South East)	Y	S	Shell
BERK-719DA8	58.53	13.5	34.7	West Berkshire (South East)	Y	D	Kitchener
BERK-899035	29.55	27.38	36.22	Oxfordshire (South East)	Y	D	Pincer
BERK-C3E5A3	21.1	18.6	11	Oxfordshire (South East)	Y	D	Pincer
BERK-CB64E6	N/A	N/A	N/A	Oxfordshire (South East)	Y	S	Shell
BH-53E0A2	33.1	14.4	15.4	Northamptonshire (Midlands)	Y	D, broken	Kitchener
BH-82C87A	20	12.1	7.81	Hertfordshire (Eastern)	Y	S	Shell
BH-AA1CBE	22.2	18.9	14.78	Hertfordshire (Eastern)	N, heavily Corroded	D	Pincer
BH-E31A4B	18.8	11	7.79	Cambridgeshire (Eastern)	Y	S	Shell
DENO-688BFI	44.39	16.63	21.32	Nottinghamshire (East Midlands)	Y	S, possibly broken	Shell
ESS-AB9EA7	22.1	22	11.85	Hertfordshire (Eastern)	Y	D	Pincer
GLO-3F7F09	22	11	4.08	Somerset (South West)	Y	S	Shell
HAMP-6F4C45	72.5	11.4	25.84	Oxfordshire (South East)	Y	D, Almost complete	Dali
HAMP-C04CC3	30	19.4	6.69	Hampshire (South East)	Y	S	Shell
HAMP-E8A48I	18.9	18.1	9.02	Wiltshire (South West)	N	D	Headphone
KENT-4C615E	41.7	35.27	20.36	Kent (South East)	Y	S	Shell
KENT-A12C41	20.63	18.23	10.2	Kent (South East)	Y	D	Pincer
LEIC-2D8733	38	16	16.69	Leicestershire (East Midlands)	Y	S	Shell
LIN-9296A3	18	17	7.74	Lincolnshire (East Midlands)	Y	D	Pincer
LVPL-B000C6	42	20	18.6	Lincolnshire (East Midlands)	Y	D	Kitchener
NARC-2C32D7	23.5	21.57	14.2	Northamptonshire (Midlands)	Y	D	Pincer
NARC-39B60B	17.08	17.34	9.3	Northamptonshire (Midlands)	Y	D	Pincer
NARC-6A4546	43.91	19.6	21.2	Buckinghamshire (South East)	Y	D	Kitchener
NARC-925E14	57.21	13.5	25.1	Lincolnshire (East Midlands)	Y	D	Kitchener
NMGW-AF1FCC	23.5	22.9	18	Monmouthshire (Wales)	Y	D	Pincer
NMS-00A898	17	11	6.29	Norfolk (Eastern)	Y	S	Shell
NMS-1EEF62	25.5	14.5	9.69	Norfolk (Eastern)	Y	S	Shell
NMS-1F5E55	30	20	13.89	Norfolk (Eastern)	Y	D	Kitchener
NMS-51B63I	30.5	19	20.5	Norfolk (Eastern)	N, heavily corroded	D	Kitchener
NMS-54B5B4	26	13	6.22	Norfolk (Eastern)	Y	S	Shell
NMS-6B7128	24	21	16.7	Norfolk (Eastern)	Y	D	Kitchener
NMS-A0C513	32	14	10.96	Norfolk (Eastern)	Y	D	Kitchener
NMS-BAA82I	41	21	7.38	Norfolk (Eastern)	Y	D	Dali
NMS-F2BA4I	39	27	16.98	Norfolk (Eastern)	Y	D	Dali

PAS Number	Length (mm)	Width (mm)	Weight (g)	County (Area)	Evidence of incised lines? (Yes/No)	Single (S) or double (D)	Type
NMS-F2BA4I	39	27	16.98	Norfolk (Eastern)	Y	D	Dali
NMS-FA914I	15	14.3	4.67	Norfolk (Eastern)	Y	D	Pincer
PUBLIC-ABB997	18.3	17.5	9.8	Wiltshire (South West)	Y	D	Pincer
PUBLIC-E9E1C5	20.07	14.58	24	Oxfordshire (South East)	Y	D	Dali
SF-520513	29	23.3	21.6	Suffolk (Eastern)	Y	D	Pincer
SF-722CF5	56.2	11.84	20.2	Suffolk (Eastern)	Y	D	Dali
SF-9183	26	24	19.05	Suffolk (Eastern)	Y	D	Pincer
SF-B58222	23.39	22.58	18.38	Suffolk (Eastern)	Y	D	Pincer
SF-E76AB6	20.29	9.35	3.49	Suffolk (Eastern)	Y	S	Shell
SOM-2867B7	32.3	16.3	13.79	Somerset (South West)	Y	D	Kitchener
SOM-7D864D	36	11.6	10.2	Somerset (South West)	Y	S	Mussel
SUR-29CED6	21.4	9.33	4.63	Oxfordshire (South East)	Y	S	Shell
SUR-C998D6	32.41	11.23	6	Oxfordshire (South East)	Y	S	Shell
SUR-FFD972	22.93	10.81	6.34	Oxfordshire (South East)	Y	S/prob. broken D	Shell
SUSS-3AEC48	29.6	11.8	9.05	West Sussex (South East)	Y	S	Shell
SUSS-87634B	20.59	18.06	9.48	West Sussex (South East)	Y	D	Pincer
SWYOR-616733	23.45	20.45	15.64	Wakefield (Yorkshire and the Humber)	Y	D	Pincer
WAW-83E1E3	20.02	11.08	2.8	Warwickshire (West Midlands)	Y	S	Shell
WILT-361573	36.24	9.87	10.74	Wiltshire (South West)	Y	S/prob. broken D	Shell
WILT-616785	58.5	12.3	24.31	Swindon (South West)	Y	D	Kitchener
WILT-F9DDA2	35.13	17.52	38.73	Wiltshire (South West)	N	S/prob. broken D	Pincer
WMID-CA9D04	21.11	20.91	10.9	Warwickshire (West Midlands)	Y	D	Pincer
YORYM-IAA0C5	14.8	15.3	4.9	North Yorkshire (Yorkshire and the Humber)	Y	D	Headphone
YORYM-9432BB	25.7	20	15.8	East Riding of Yorkshire (Yorkshire and the Humber)	Y	D	Pincer

Table 1 - UMOs in the dataset.

Within the PAS records for UMOs, there are some different theories to what use they could have served, including scabbard chapes (BH-53E0A2), pommels and mounts on daggers (BERK-719DA8). I believe that there is enough evidence against their use as a traditional scabbard chape, due to the comparatively small size of most UMOs in the data set (Table 1), with pommel and mount use also unlikely. There are very few examples of Bronze Age pommels and mounts, with PAS records suggesting that UMOs are Bronze Age in date. There is very little evidence for what these items could have been attached to, with only BERK-C3E5A3 showing possible signs of metal corrosion within the perforation. UMOs could potentially have been mounted or hafted onto organic materials, but due to the conditions that many have been found in, there is little chance of organic remains surviving. Their use as a decorative piece on a wooden shaft or object

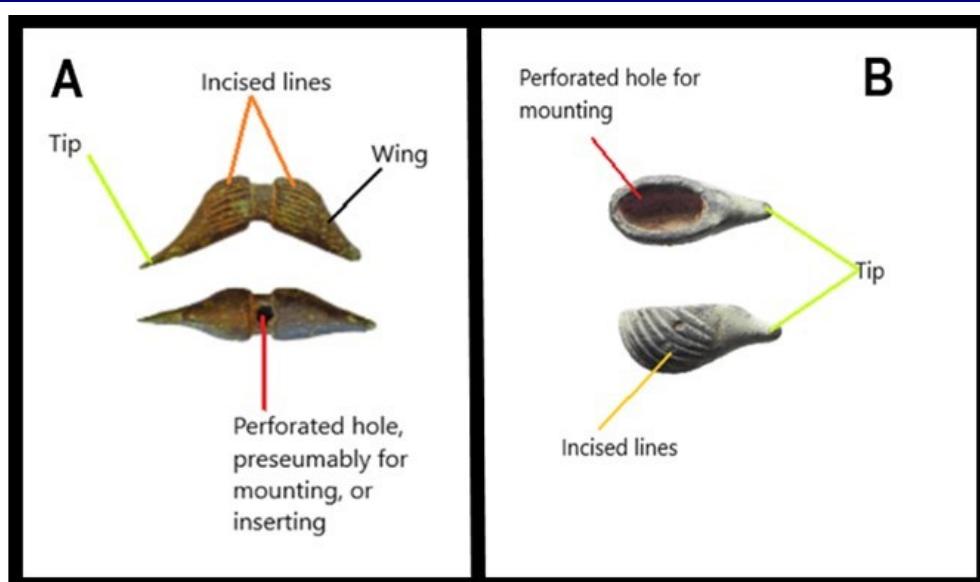


Figure 2 - Annotated images of typical double (A) and single (B) UMO types. These show the features that are required to class an object as a UMO (NARC-6A4546 & SUR-29CED6)

has potential, but would require more data and research, with the idea stemming more from the lack of evidence to the contrary. The South East and Eastern parts of England have produced over half of UMOs found so far (Figure 3). Although this can partly be explained by these areas having more active detectorists, this pattern warrants further investigation to determine whether these items originated in these areas or even from continental Europe.

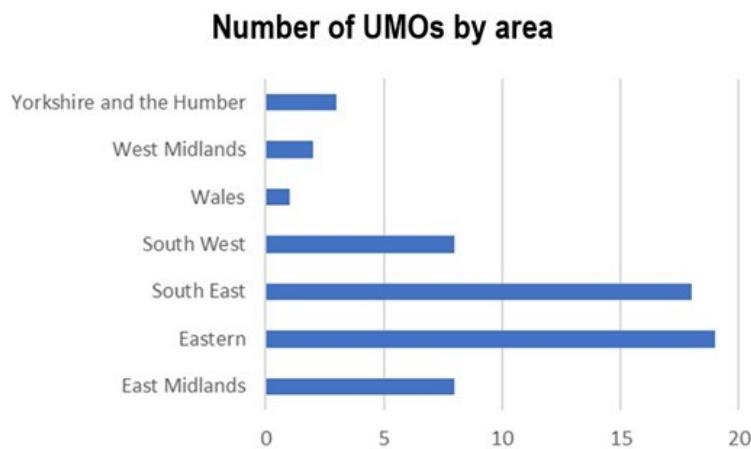


Figure 3 - Representation of UMOs by area. The South East and Eastern areas dominate the find areas

Future Research

I am lucky enough to be studying an MA in Archaeology at the University of Exeter for the next 18 months and hope to undertake an experimental project, outside of university modules with some fellow students. We hope to be able to take casts of some of the UMOs, recreate them and attempt to attach them to various objects/materials to try to discover usage. I also hope that more examples can be identified by the PAS and particularly from archaeological excavations. Dating UMOs is imperative to help with our understanding of these fascinating and strange objects.

Acknowledgments

I would firstly like to say a special thank you to Laura Burnett for mentoring me to use the PAS database, giving me the idea and discussing UMOs with me during my placement, without that I would not have written this article. I would also like to thank Prof Naomi Sykes (University of Exeter) for reading this article and helping to give me the confidence to do this and a big thank you to John Smythe, who told me about this newsletter and has given me a lot of food for thought about future research.

References

ADAMS, W. & ADAMS, E. 1991. *Archaeological Typology and Practical Reality: A Dialectical Approach to Artifact Classification and Sorting*, Cambridge: Cambridge University Press

BOOYER, A.L. 2015. The Tyranny in Typology in R. Chapman and A. Wylie (eds), *Material evidence: learning from archaeological practice*, 92-111 New York: Routledge

FOWLER, C. 2017. Relational Typologies, Assemblage Theory and Early Bronze Age Burials. *Cambridge Archaeological Journal* 27(1), 95-109

STEAD, I.M. 1998. *The Salisbury Hoard*. Tempus Stroud

Jonathan is currently reading for an MA in archaeology at the University of Exeter. He has an interest in all material culture but hopes to focus on ceramics, particularly areas of petrography, lipid and protein analysis, in the future.

Jpd207@exeter.ac.uk

Twitter: @DaveyJonny

Are textile tools not special? Reviewing depositional histories from Iron Age Britain.

Jennifer Beamer, University of Leicester

Textile tools, many with use-wear evidence, are rarely found in primary use contexts from the British Pre-Roman Iron Age (c.800BC-AD43), making the interpretation of textile production difficult. Danebury hillfort in Hampshire was the case study site for a depositional history investigation (Cunliffe 1984; 1991). Contention exists over the purpose of hillforts (e.g. Moore 2017), though Cunliffe suggested they functioned as community stores and redistribution hubs (Cunliffe 1995, 94). Textile production became viewed solely as part of the economic sphere, with textile tool numbers suggesting surplus production, an idea that has not been critically examined since the mid-1990s.

My doctoral project approached textile production and depositional patterns of textile tools in the Danebury landscape and addressed the problem of direct correlation between archaeological recovery and the interpretation of depositional sequences. My conceptual framework utilised a multi-scalar approach for a comprehensive overview of production and depositional practice. This research revealed how our archaeological perspectives can influence the interpretive value of the objects we study. Therefore, certain words or phrases—for example ‘special’ deposit—applied to objects need to be critically re-examined. Loomweights, spindle whorls, needles, and long-handled combs have been the pre-eminent objects used to prove that Danebury was a textile production centre (Cunliffe 1995, 94). In conjunction with the excavation notes, my framework and a co-developed textile tool database permitted an assessment of the depositional assemblage. The study established a background depositional behaviour of textile tools and revealed non-random patterns. This emphasised the interpretive value of textile tools with respect to their production and depositional contexts; as a result, ‘specialness’ needed to be problematised.

A depositional analysis investigates site formative processes. Pit contents were used by Cunliffe to determine the range of production activities, such as intensity of craft production, and ritual (Cunliffe, 1984). Cunliffe placed emphasis on key deposits that included human and/or animal remains, labelling them as ‘special deposits’. His definition for labelling textile tools as ‘special’ required they be disposed of in multiples - a predetermined notion of ‘special’. This definition removes all other interpretive possibilities, disregarding textile tools that have interesting life trajectories, though not ‘special’ as defined.

A sample of 94 pits containing textile tools were examined in this study. 127 (24%) of 520 contexts contained at least one textile tool. Considering the full depositional history of each pit established material cultural patterning for the sample. Two primary questions were considered:

I. What is the background deposition pattern? How does patterned/structured deposition differ from this?

- Pit by subtype (beehive, cylindrical, sub-rectangular, conical, unclassified)

- Pit by ceramic phase (CP), broken into CP (1-3), (4-5), (6-9) which roughly correlates to Early Pre-Roman Iron Age (800-500BC), Middle Pre-Roman Iron Age (500-100BC), and Late Pre-Roman Iron Age (100BC-AD43), and by textile tool content
- Pit by number of total contexts and number of contexts containing textile tool finds
- Pit by layer analysis of textile tool type and those without any textile tools
- Pit by burned/unburned textile tool type and number, broken/unbroken textile tool type and number, and single/paired (grouped) textile tool type and number

2. Do textile tools form part of this patterned/structured deposition?

The first question was answered after accounting for each variable in the bulleted list. The depositional analysis revealed the patterning of soil matrix and material culture for depositing textile tools, the pattern of deposition, and which associations/disassociations could be related. Each fill layer was analysed, following the nomenclature used by the original excavators for creating the categories.

The B/D/B category refers to distinct categories of materials within the context layer (Table 1). The first and last B's refer to burned material, either organic (charcoal) or inorganic (flint or chalk), and the D refers to the deposited assemblage. In some cases, there is a distinctive layering pattern of burned organic material at the bottom of the layer, an assemblage of small finds, osseous remains, and/or other cultural products, and a spread of burned inorganic material on the top of the layer. Other instances are less distinct, yet the layers contain each component: burned organic material, deposited assemblage, and burned inorganic material. This was a distinct pattern of behaviour: approximately 39% (45/116) of instances in the sample pits analysed follow this B/D/B pattern. With additional investigation, Table 2 summarises pit deposition strategies overall, and with respect to textile tools specifically. When broken down into textile tool finds per pit per phase, the frequency of deposits remains constant (Table 3). Superficially, this might be indicative of intensification of production, however, this may be related to a rise in population (Davis 2013, 367) Also, it may not be the sole factor influencing depositional practice.

N=116	B/D/B	Possible B/D/B	No Pattern
Frequency	21	24	71
%	18.10%	20.70%	61.20%

Table 1 - Number of context layers (n=116) that were analysed. B/D/B refers to: burned organic layer/deposit/burned inorganic layer. Burned components in the soil layer was revealed as significant against the background soil matrices.

Phaseable Pits	Beehive	Cylindrical	Sub-rectangular	Conical	Unclassified	Total	%
CP 1-3	356	103	46	2	25	532	57%
CP 4-5	113	16	8	1	4	142	15.20%
CP 6-9	214	26	4	2	13	259	27.80%
Total=933	683	145	58	5	42	933	
%	73.20%	15.50%	6.20%	0.50%	4.50%		
Textile tool pits	Beehive	Cylindrical	Sub-rectangular	Conical	Unclassified	Total	%
CP 1-3	10	4	6	0	1	21	23.10%
CP 4-5	15	0	2	0	0	17	18.70%
CP 6-9	45	6	0	2	0	53	58.20%
Total=91	70	10	8	2	1	91	
%	76.90%	11%	8.80%	2.20%	1.10%		

Table 2 - The upper set of figures was taken from the first field season and represents a trend where deposition into pits decreased over the site's lifespan. The lower set revealed deposition behaviour which featured an increase in textile tool deposits over the background pattern, increasing over time rather than decreasing over time. Depositing into specific sub-types of pits seems to have remained a consistent practice over time.

	Loomweights	Spindle Whorls	Long-handled combs
CP 1-3	2.23	1	1
CP 4-5	1.1	1.29	1
CP 6-9	2.06	129	1
Totals	106	45	24

Table 3 - Average deposit per tool type per pit, divided by phase.

Two criteria were selected for discussion. The first relates to completeness of loomweights. If production intensification was the primary reason for an increase in deposits, one would also expect to see a higher prevalence of broken loomweights—the data shows otherwise (Table 4). These complete loomweights were placed deliberately, not accidentally. This behaviour may be related to aspects of the *chaîne opératoire* that have yet to be investigated; equally, their mass may have been an important factor. The second criterion relates to burned long-handled combs, chalk loomweights, and spindle whorls. Eight (of 16) combs were burned, which renders bone and antler brittle. Use-wear analysis indicated that these combs were deliberately burned prior to deposition. Functionally, there is no reason to burn a comb. Similarly, there is no functional

	Complete	Incomplete	Percentage Complete
Loomweight, chalk (85)	40	45	47.00%
Loomweight, clay (21)	0	21	0%
Spindle whorl, chalk (32)	11	21	34.40%
Spindle whorl, clay (15)	10	5	66.70%
Long-handled comb (24)	3	21	12.50%
Total (177)	64	113	36.20%

Table 4.

reason to burn chalk to improve or alter its functionality as a loomweight. If there is a higher percentage of limestone in its composition, chalk can explode in a fire. The purpose of this burning, beyond accidental, is unclear.

These two examples demonstrate the interpretive value of textile tools from the perspective of production and deposition. Realistically, there are several plausible reasons for the formation of the Danebury record which do not require 'ritual' to be the primary governing principle of those behaviours. Complete chalk loomweights may have been deposited in pits when a weaver decided they should be replaced. Suspension wear on a chalk loomweight may weaken them as tools. This re-evaluation of the functional parameters of loomweights and depositional behaviours may indicate society's perception of use-life. Though it seems less plausible, their mass (1.5kg) may have been useful. These are practical reasons to find complete loomweights in deposits, but it does not preclude cultural traditions having influence over these types of decisions. There were only four instances where burned textile tools were found in association with the B/D/B pattern—an insignificant occurrence. Similarly, there were only three instances where complete chalk loomweights were found in this pattern of deposition. From this analysis, these archaeologically-defined descriptors of 'specialness' may not be significant.

Deposited material should not be considered within the dichotomy of 'rubbish/ritual' nomenclature (Garrow 2012, 136-7). Nor should the number of tools per deposit be considered 'special' or that all cases of burning be classed as 'significant'. Small scale depositional studies are useful in revealing details about behaviour that were previously unrecognised. By analysing the full extent of the data available, a specific pattern of deposition was discerned. Crucially, textile tools and cloth cannot simply obtain 'significance' through their association with human bodies, for example textiles as part of burial assemblages indicates a specific type of significance that relates to that circumstance. In this case, the textile is significant in the ways it represents animal husbandry practices, spinning and weaving technologies, time and economic investment, halting/encouraging decay, fashion, mortuary practice, and so on, according to archaeologists. However, textile tools that have been

recovered from unusual, patterned situations—such as those discussed in this paper, tend not to be considered ‘significant’ by archaeologists.

The interpretive value of a textile tool gains ‘significance’ when certain circumstances arise: spindle whorls found with female bodies. One point implicitly raised through the work of Hill (1995) is that objects can obtain significance through the methods of their deposition and revealed through a study of material cultural patterning. In this way, subtle characteristics of depositional practice involving textile tools are revealed and become significant on their own accord, rather than gaining ‘significance’ only in specific, archaeologically-defined, circumstances.

This paper has shown the problem of using certain qualifiers in descriptions of classes of artefacts. Technological sophistication should not define ‘significance’ in depositional practice. Textile production at Danebury has been fundamentally changed through this small-scale study. Iron Age people were making decisions about textile tool functionality and depositing them in a manner that was meaningful to them. Considering this new data, textile tools cannot be understood as a total reflection of production activities. By changing the archaeological perspective of ‘specialness’, the interpretive value of textile tools is revealed.

References

CUNLIFFE, B. 1984. *Danebury: An Iron Age Hillfort in Hampshire. Volume 1: The Site*. London: Council for British Archaeology.

CUNLIFFE, B. 1991. *Danebury: An Iron Age Hillfort in Hampshire. Volume 4: The Site*. London: Council for British Archaeology.

CUNLIFFE, B. 1995. *Danebury Iron Age hillfort in Hampshire. Volume 6: A hillfort community in perspective*. Council for British Archaeology. CBA Research Report 102.

DAVIS, O. 2013. Re-interpreting the Danebury Assemblage: Houses, Households, and Community. *Proceedings of the Prehistoric Society*. **79**, 353-375.

GARROW, D. 2012. Odd deposits and average practice. A critical history of the concept of structured deposition. *Archaeological Dialogues* **19**(2), 85-115.

HILL, J.D. 1995. *Ritual and Rubbish in the Iron Age of Wessex: A Study on the Formation of a Specific Archaeological Record*. BAR British Series 242. Tempus Reparatum Archaeological and Historical Associates Ltd: Oxford

MOORE, T. 2017. Beyond Iron Age ‘towns’: Examining oppida as examples of low-density urbanism. *Oxford Journal of Archaeology*. **36**(3), 287-305.

In addition to Jennifer's work on textile production and depositional studies, her other research interests include experimental archaeology and developing methods for capturing experience during experimentation.

jkb32@leicester.ac.uk

Twitter: @JenniferBeamer2

Book Review

La parure en métal de l'âge du Bronze moyen atlantique.

Marilou Nordez. Mémoires de la Société préhistorique française 65. Paris: Société préhistorique française. 2019. 404 p. ISBN 2-913745-77-6. €30.00

Allison Casaly, New York University

As physical additions to the human body, personal ornaments are intrinsically linked with one's constitution of the self and the placement of one's being in a social and symbolic context. The way that people used ornaments in the past and the characteristics of the objects with which they chose to adorn their bodies have the potential to inform on notions of individuality, community identity and socioeconomic interaction in the Bronze Age. The relative neglect of ornament studies relative to tools and weapons in Bronze Age research has thus far represented a missed opportunity to examine these subjects. This is particularly true for bronze ornaments, which are often neglected in favor of gold. Marilou Nordez's extensive volume on bronze personal ornaments of the Atlantic Middle Bronze Age 2 (BMa2) in northwest France not only fills this gap for northwest France, but demonstrates the insights that can be obtained through detailed, methodical study of personal ornamentation in the Bronze Age.

Nordez begins by contextualizing her study with a discussion of the features of the Bronze Moyen (BM; ca. 1650-1350 cal BC), characterized by the sharp increase of volume of metal deposited and the shift of ornamental contexts from funerary deposits in the Bronze Ancien to predominantly hoard contexts in the Bronze Moyen (BM; ca. 1650-1350 cal BC). She provides a useful historiography of certain concepts central to our current understanding of the Bronze Moyen, including a recap of chronological frameworks. Particular emphasis is placed on the development and application of the concept of the Atlantic Middle Bronze Age, which Nordez proceeds to test and refine in the remainder of the work.

To facilitate her study, Nordez has compiled a comprehensive database of 1,857 personal ornaments, with a central corpus covering northwest France and a secondary corpus covering comparable objects from surrounding areas. Chapter two presents a typological system based on three core features, namely morphology, function and decoration. It evaluates and classifies pins, neck ornaments, and bracelets/anklets, ultimately resulting in 14 types of pins, two types of torcs, and 27 types of bracelets/anklets. As part of her typology, Nordez presents a strong argument for overturning long-utilized categories including Bignan bracelets and Picardy pins, in favor of breaking them down into more detailed categories. Moreover, she has provided a much-needed

vocabulary for discussion of ornamental features, presenting, for example, standardized terminology describing the dizzying array of pin head shapes present in the Middle Bronze Age.

A particular value of Nordez's work is her incorporation of decorative motifs that adorn ornaments themselves to her typological system. Nordez's past work has done much to establish the intricacy and complexity of massive annular bracelets, and to establish a typology of decorative motifs that encompasses this complexity (Nordez 2017). Rather than breaking down decoration into its most basic constituent elements, Nordez prioritizes the relationships between motifs as important components of overall decoration. This attention to decoration of ornaments themselves forms a core tenet of her typology, bringing to the forefront an aspect often overlooked in favor of overall form.

Chapter 3 consists of a technological study of bronze ornament production, yielding important insights into the techniques employed by Bronze Age metalworkers. Nordez utilizes macroscopic study in combination with experimental replication of annular bronze ornaments to attain a new understanding of the bronze ornament manufacturing process. She establishes a new *chaîne opératoire* for several ornament forms, differentiating between the predominance of post-casting work in twisted ornament manufacture and the predominance of pre-casting work in massive annular ornament manufacture. The production process of massive annular ornaments predominantly takes place pre-casting through utilisation of the lost wax (*cire perdue*) technique. Lost wax had previously been regarded as a principally later Bronze Age technique. The decoration of most bronze ornaments in the Middle Bronze Age had long been thought to be achieved through incising or chasing following the casting or hammering of

body form (e.g. Rowlands 1971; Fleury 1992; Lagarde-Cardona and Pernot 2009). Nordez's work establishes its widespread and refined use several hundred years earlier than had been previously thought (Bowman and Needham 2007, 91-3; Meeks *et al.* 2008, 24-5; although see Armbruster 2017). Further, she establishes physical indicators of lost wax technique that can be sought by researchers studying other locales. This research is a strong example of the value of obtaining experience in the technical production of objects in order to better understand the objects themselves.

Nordez concludes with a discussion of the cultural, socioeconomic and symbolic insights resulting from her comprehensive study. Although she finds the category of bronze ornaments insufficient to support a detailed chrono-typological scheme, Nordez identifies patterns that allow her to propose spheres of sociocultural commonality. Such patterns relate to ornament form, decoration, and depositional practice. The proposed spheres of commonality range from the hyper-focused "micro-groupes" (e.g. Médoc, Finistère) to regional groups (e.g. Armorican, Seine/Somme). The wide geographical breadth of her study enables Nordez to identify networks of exchange between these spheres, characterized by preferential exchange between specific areas. Nordez ultimately identifies a supra-regional Atlantic network in the Middle Bronze Age, challenging conventional characterizations of the Late Bronze Age as the beginning of expansive exchange networks. This overarching network connects an area spanning part of the Atlantic coast of France, northern and much of Central France, both sides of the Channel, and Denmark and northern Germany. Notably, the dynamic identified by Nordez differs significantly from that of the Late Bronze Age, indicating upheaval in the exchange system during the transition between these two periods.

Finally, the appendices provide an invaluable resource for all researchers studying the Middle Bronze Age of Europe. The comprehensive catalogue, and indeed the work as a whole, is exceedingly well illustrated. This feature is particularly important for objects of ornamentation, the effect of which is achieved primarily through visual communication (although sound may have played a role as well). The terminology used to describe objects (e.g. quoit-headed, buffer -shaped, etc.) and decisions as to what features are important (e.g. cross-section, terminal shape) necessarily reduce the complexity of a visually constructed object to a list of criteria. This can potentially obscure those elements of the object which might have been salient to those who manufactured, wore, and deposited it. Such an effect is particularly evident in the verbal description of complex decorative motifs which flow into one another in visually complex ways. By providing an extensive visual corpus of BMa2 ornaments, Nordez has made available a wealth of information not easily communicated verbally. It is an invaluable tool for comparison with other areas, and the immense effort required to compile it is commendable.

This monumental work represents the culmination of years of work on Middle Bronze Age ornaments by Dr. Marilou Nordez. Nordez provides the focused attention demanded by the complex topic of ornamentation, which is often treated elsewhere as a single element within larger studies of material culture. Her development of a detailed typology for the BMa2 period imposes order on a staggeringly complex system of ornamentation, and her experimental work has established a new understanding of ornament production processes. This has allowed her to illuminate the complex network of social exchange active during the BMa2 in northwest France and its surrounding areas. Nordez's highly comprehensive study constitutes an invaluable contribution to Bronze Age studies as a whole.

References

ARMBRUSTER, B.R. 2017. Manufacturing processes of Atlantic Bronze Age annular gold ornaments—A case study of the Guînes gold hoard (Pas-de-Calais, France). *Materials and Manufacturing Processes* **32**(7-8), 728-39.

BOWMAN, S. and NEEDHAM, S. 2007. The Dunaverney and Little Thetford flesh-hooks: History, technology and their position within the Later Bronze Age Atlantic Zone Feasting Complex. *Antiquaries Journal* **87**, 53-108.

FLEURY, L. 1992. *Les bracelets massifs à décor incisé du Bassin de la Seine. Étude typologique et technologique*. Mémoire de recherche approfondie, École du Louvre, Paris, 2 vol.

LAGARDE-CARDONA, C. and PERNOT, M. 2009. Approche pluridisciplinaire d'un ensemble d'objets métalliques de l'âge du Bronze découvert à Soulac-sur-Mer (Gironde). *Bulletin de la Société préhistorique française* **106**(3), 553-67.

MEEKS, N.D, CRADDOCK, P.T and NEEDHAM, S.P. 2008. Bronze Age penannular gold rings from the British Isles: technology and composition. *Jewellery Studies* **11**, 13-30.

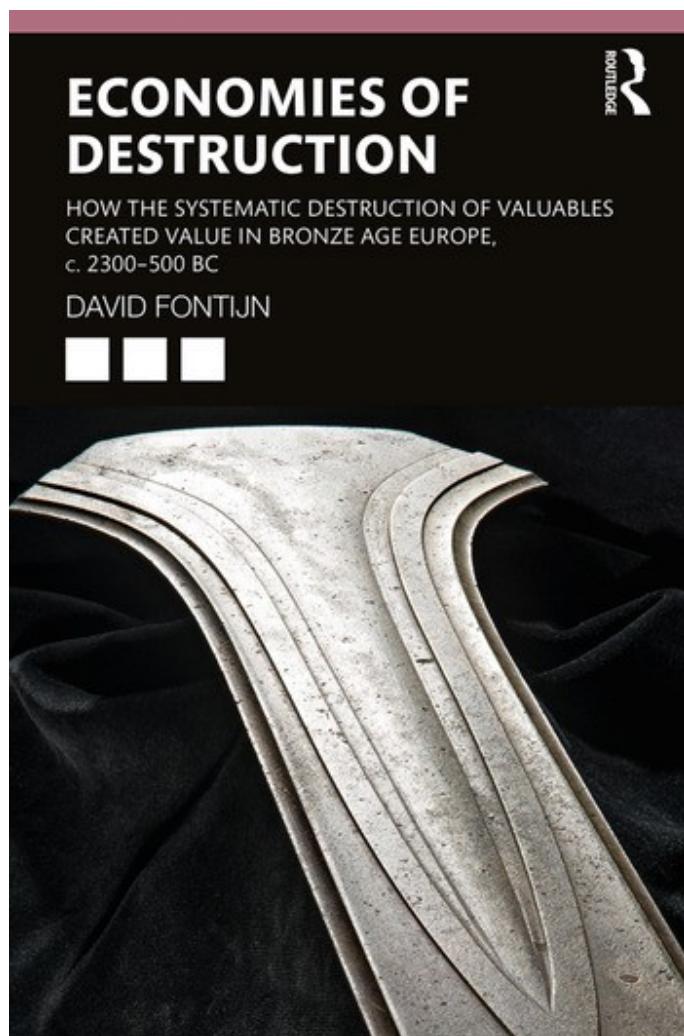
NORDEZ, M. 2017. Les ornements du corps comme indicateurs techniques et culturels. Le cas des parures annulaires massives à décor incisé du Bronze moyen au début du Bronze final en France. In C. Mordant, and S. Wirth, S. (eds.) *Normes et variabilité au sein de la culture matérielle des sociétés de l'âge du Bronze*, 33-55. actes de la journée thématique de la Société préhistorique française (Dijon, 15 juin 2013), Seances de la Societe prehistorique franceaise **10**, Paris

ROWLANDS, M.J. 1971. A Group of Incised Decorated Armrings and Their Significance for the Middle Bronze Age of southern Britain. *British Museum Quarterly* **35**(1/4), 183-99.

Allison Casaly is a PhD candidate studying personal ornamentation in the Middle and Late Bronze Age of Britain and Ireland.

Allison.casaly@nyu.edu

Book Review


Economies of Destruction. How the systematic destruction of valuables created value in Bronze Age Europe ,c.2300–500 BC.

David Fontijn. Routledge, Abingdon. 2020 (2019 Paperback). 184 p. 44 B&W illustrations. ISBN 9781138088399. Available in Hardback (£96), Paperback (£27.99) and eBook (£27.99)

Sophia Adams, SUERC, University of Glasgow

Since reading Professor David Fontijn's most recent book 'Economies of Destruction', I have found myself making reference to it on several occasions in discussions with colleagues, in my written work, and in engagement with the public. I see this as good sign that the book generates ideas and debate, and has the potential for broad impact. I recommend it to all members of the Later Prehistoric Finds Group. Fontijn provides an accessible route into the discussion of deposition practices for students, some sage advice and pertinent reminders for the more experienced finds specialist and academics, and a clear discussion for the interested enthusiast. He provides an overview and attempts to understand regional and international patterns in the deposition of objects in the landscape during the Bronze Age.

David Fontijn is well known in the world of prehistoric research for both his own research and project leadership. He is promoted by the University of Leiden as a landscape archaeologist, but he is clearly knowledgeable on artefact evidence and takes advantage of his landscape knowledge to set the artefacts in context. He tackles Bronze Age hoards with an approach that is not solely centred on deposits of metal and, as a result, becomes a question about logic, contemporary bias, Bronze Age economics, anthropological theory, international contacts and local connections. Focussed, for the most part, on northern Europe and covering case studies from the mid third to mid first millennium BC (4300 – 2500 years ago).

The main argument of the volume, and the reason for the title 'Economies of Destruction', is that destruction is core to the Bronze Age economy in Europe. There is thus a logic to the deposition of items of value, to taking them out of circulation. It does not mean that the items themselves have to be physically destroyed, instead the chain of production, exchange and use is broken for those objects. By breaking that chain, by taking items of value out of circulation, value is created and the economy sustained. "The conclusion is inescapable that the 'un-economic' giving-up of commodities by burial in the landscape was *an integral part of what a Bronze Age economy was about*. Adopting a phrase from Küchler (1997), the Bronze Age economy was a 'sacrificial economy'." (Fontijn 2019, 106).

This argument is developed over a series of chapters. The book is written as a single volume but each chapter is, in effect, an essay on a single different interpretation of deposition practice and behaviour, followed by a separate bibliography. I suspect this is partly informed by Fontijn's teaching experience. It allows for tutors to copy and share single chapters and their bibliographies with students. It also creates the space to explore the individual interpretations in depth. You do need to read all the chapters to fully grasp his argument. I found myself frustrated in the earlier chapters that too much emphasis was placed on identifying similarities in the evidence and not considering difference, but this concern was allayed in the second half of the book.

The first part of the volume concentrates primarily on the Early and Middle Bronze Age moving on to the Late Bronze Age material in Chapter 5. Though the topic is focussed on the Bronze Age in Europe the method of interpretation has relevance to studies of deposition in different regions and time periods. Particular attention is given to the question of where these Bronze Age practices have come from, i.e. the history and traditions of the Bronze Age. In this way the apparently curious deposition practices of the Bronze Age are given a wider context. For Fontijn the types of objects deposited, the place of deposition and the manner of deposition in the Bronze Age has clear antecedents in the Neolithic. There may be a change in the material the objects are made from (e.g. from polished stone axes to bronze ones), and there is some shift in the distribution of deposits in the landscape, but they are not occurring in isolation disconnected from all that went before or contemporary activity elsewhere in Europe. These connections are what fascinates him and helps build his argument.

Fontijn's argument is developed with the aid of simple diagrams that imply a neat and organised pattern of thought and behaviour even if it is multi-layered. I appreciate the need to create some order to our arguments about these issues and the value of visual aids. I like the clarity of this approach but it also makes me suspicious. I have dug too many archaeological features, crawled through too many site archives and sifted through too many excavation monographs to accept the evidence is this neat. I admire the attempt to find order in the myriad remains and varied quality of records but I am concerned that this desire overrides the variation in the archaeological record and inadvertently removes the individual. I encourage readers to compare this with Joanna Brück's recent volume *Personifying Prehistory: Relational Ontologies in Bronze Age Britain and Ireland* (Brück 2019). Brück also explores the relationship of people, objects and landscape but her emphasis on the person and personal makes greater allowance for the presence of the individual in the past.

I have one general complaint that applies to many current archaeological publications and the restrictions often imposed by publishers: this is the publication of colour photographs as black and white images. Too often the tonal difference between the items in the image is too low for reproduction in this way and colour versions would have been far more informative. In this volume this issue is particularly noticeable in Cyril Marcigny's photo of The Gatteville palstave hoard during excavation (Fontijn 2019, 95 Figure 5.4): a clear image if it had been reproduced in colour. Too often images are taken with the intention to be reproduced in colour and do not render well when reproduced in black and white. If they are created as black and white photographs from the outset this is less of a problem. The cost of colour printing is often the issue for printed publications. In such cases it would be a great benefit if those images could at least be reproduced in colour in the electronic editions.

Overall I appreciated the opportunity to read Fontijn's research. I admire his ability to note where his ideas have changed since previous publications and I very much appreciate that he gives clear credit to data and ideas put forward by other authors. This book is for anyone who has ever asked or tried to answer the question of why hoards of metalwork or assemblages of flint axes were buried in the ground. It is both a little book of prehistoric axes and a philosophical volume on the relationship between objects in circulation and those taken out of circulation in a later prehistoric context. It is a reminder that what may seem logical now can be quite at odds with what was deemed logical in the past. Fontijn interprets these Bronze Age deposits as part of a long tradition and as, primarily the intentional burial of objects not for retrieval. Like Roberts *et al.* (2015) he rejects the idea that big deposits of bronze objects towards the end of the Bronze Age are evidence of 'collapsing commodities' and sees the artefacts as creating relational identities.

References

BRÜCK, J. 2019. *Personifying Prehistory: Relational Ontologies in Bronze Age Britain and Ireland*. Oxford: Oxford University Press.

KÜCHLER, S. 1997. Sacrificial economy and its objects. *Journal of Material Culture* 2. 39-60.

ROBERTS, B.W., BOUGHTON, D., DINWIDDY, M., DOSHI, N., FITZPATRICK, A.P., HOOK, D., MEEKS, N., MOGIATTI, A., WOODWARD, A. and WOODWARD, P.J. 2015. Collapsing commodities or lavish offerings? Understanding massive metalwork deposition at Langton Matravers, Dorset during the Bronze Age – Iron Age transition. *Oxford Journal of Archaeology*, 34(4), 365-395.

Sophia Adams is a research archaeologist based in Kent. She focuses on the Bronze Age and Iron Age in Europe, particularly metalwork, metalworking and chronology. Recent publications include:

Webley, L., Adams, S. and Brück, J. 2020. *The Social Context of Technology: non-ferrous metalworking in later prehistoric Britain and Ireland*. Prehistoric Society Research Paper 11. Oxford: Oxbow.

Book Announcement

Coton Park, Rugby, Warwickshire: A Middle Iron Age settlement with copper alloy casting

Andy Chapman. 2020. Coton Park, Rugby, 166pp, 103 B&W and col plates. Archaeopress Archaeology (<https://www.archaeopress.com/>). Printed ISBN 978-1 78969-645-5. Printed £35.00 (No VAT). EPublication (PDF format), £16.00

Andy Chapman, Independent Researcher

A total area of 3.1ha, taking in much of a settlement largely of the earlier Middle Iron Age (c.450 to c.150BC), was excavated in 1998 in advance of development. Its origin lay in the 5th century BC with a single small roundhouse group. Through the 4th and 3rd centuries BC the settlement expanded, with the original structures replaced by a principal roundhouse group accompanied by at least a further two groups of roundhouses and enclosures and minor outlying structures. A group of structures and enclosures set apart from the main domestic area was the focus for copper alloy casting, producing an assemblage of crucibles and fragments from investment moulds for the production of horse fittings, as well as bone, antler and horn working debris. The extensive discussion includes an overview of Iron Age pottery typology and chronology, largely based on Iron Age ceramics from Northamptonshire, building on the pioneering work of Dennis Jackson. There is also a study of the transition from the saddle quern to the rotary quern, which is dated to the period 250-200BC, coinciding with an increase in the size of storage jars, often scored ware jars, in response to the increased production capacity of the rotary quern. In addition, there is an overview of the Iron Age roundhouse and the nature of the surviving evidence on the often plough denuded sites across the midland counties. This draws extensively on a few better preserved sites that serve as exemplars for the range of evidence that may survive.

**Coton Park, Rugby,
Warwickshire:
A Middle Iron Age
Settlement with
Copper Alloy Casting**

Andy Chapman

Conference Summary

What's new with Bronze and Iron Age Finds? A summary of the LPFG Online Symposium 2020

Helen Chittock, AOC Archaeology Group

On Friday 6th November the LPFG held our first online event. COVID-19 meant we were forced to cancel plans for an in-person conference in 2020, but we decided we still wanted a chance to catch up with the rest of the later prehistoric finds community, and hear about recent research and discoveries. We ran the symposium as a Zoom webinar, which allowed each speaker to present remotely, and allowed the audience to engage in questions and discussion through Zoom's chat function. We're very grateful to AOC Archaeology Group for lending us their Zoom Pro account for the symposium, as well as for several practice sessions.

The symposium began with eight quick-fire presentations, allowing us to sample and discuss a diverse range of research. We began with four papers delivered by Clodagh O'Sullivan, George Prew, Natasha Harlow and Edward Caswell, respectively. George discussed the construction and perception of dressed Iron Age bodies in mortuary settings at Osteria dell'Osa, Italy, whilst Clodagh discussed deposition within hoards and wetland sites in Iron Age Ireland. Natasha then summarised the results of excavations by the Caistor Roman Project, focusing on the rich assemblage of Late Iron Age and Early Romano-British finds from the site and the ways they have influenced interpretations of the foundation of *Venta Icenorum*. Edward Caswell introduced a new database of British Bronze Age hoards, which brings together a wealth of open access data and carries huge potential for analysis. After our first coffee break we were treated to news of a recently discovered Bronze Age hoard from County Durham, with some intriguing unidentified bronze objects in a talk by Elizabeth Foulds, and a synthesis of Late Bronze Age and Iron Age hoards in Wales by Andrew Reynolds, who sees hoarding as "a shared, repeated practice carried out locally". The morning closed with two papers on ceramics: an examination of the complex fragmentation practices in Bronze and Iron Age Albanian burials by Ermelinda Trinder, and a reconsideration of Iron Age pottery typologies in East Yorkshire by Chris Cumberpatch.

A number of longer presentations followed the lunch break, beginning with a talk by Emily Freeman and Matt Knight, who provided a fascinating account of the excavation of the new hoard from Peebles, Scotland, an equestrian assemblage dating to the Late Bronze Age. Alex Bliss then summarised his recent work on re-classifying and spatially analysing miniature socketed axes from across Britain. This was followed with a talk by Peter Reavill, who presented an extensive depositional landscape in the Welsh Marches and emphasised how metalwork deposits across time were an integral part of the formation of societal memory in an underexplored area of later prehistoric Britain. Our focus on deposition continued with a paper by Jen Beamer, who spoke about her work on the deposition of textile tools, emphasising the importance of non-metal objects in depositional practices, while Tiffany Treadway's presentation focused on the cognitive processes involved in the creation of memories during wetland deposition.

Our final two papers focused on Iron Age metalwork. Rebecca Ellis gave preliminary results from her PhD research on zoomorphic and anthropomorphic imagery in Iron Age Britain. The day's presentations were then drawn to a close by Tess Machling and Roland Williamson, who provided us with a video of their experience of gold working, giving an insight into the sensory experiences involved in working with gold. A number of themes emerged during the day, running through multiple presentations and powerfully demonstrating current directions and connections shared across a diverse range of research topics. An interest in collective memory and mnemonics was something that several presentations discussed, with a focus on the role of sensory experience in the formation of memory. As is expected in a symposium on archaeological finds, typology was discussed in several talks with some speakers proposing updates to existing typologies. The use and availability of archaeological data was a key theme, with some important discussion on the construction and use of databases occurring throughout the day and with several speakers demonstrating the usefulness of Open Access data for archaeological projects. The definition of archaeological terms is always a good source of debate and a question that emerged on several occasions was the definition of the word 'hoard'. Considering the fact that a large number of new Bronze Age hoards have been discovered in recent years, now is a good time to be asking this question.

On behalf of the LPFG Committee, I'd like to thank all of the speakers for providing us with a stimulating range of ideas to discuss, and we'd also like to thank everyone who attended the webinar and who engaged with the presentations through Zoom's chat function. We hope we'll be able to meet in person in 2021 but, considering the positive responses to our first Online Symposium, we'll hope to host more online events in the future too!

You can read the full programme of the symposium here: <https://laterprehistoricfinds.com/news-and-events/>

Helen works as a Project Officer (Post-Excavation) for AOC Archaeology Group, and is currently Chair of the Later Prehistoric Finds Group. She specialises in the study of Iron Age and Roman finds with a particular interest in decorative practices and repair.

helenchittock@gmail.com

Twitter: @DrChittock

Obituary

Val Rigby

Later Prehistoric Finds Expert

Died November 2020 aged 79.

Jennifer Foster, University of Reading

Val read Geography at Manchester University but started excavating in 1963 at Winterton, Yorkshire with Dr Ian Stead as director, and was inspired to be an archaeologist from then on. It was her first excavation, but she took over the finds shed: Val was always in charge and was a formidable presence whether on site or in post-excavation.

Ian was an Inspector of Ancient Monuments in 1963, and Val became his finds assistant in about 1964, helping to write up his extensive excavations. She worked on many excavations with Ian including Baldock and King Harry Lane, Herts; Rudston and Burton Fleming, East Yorks; she even helped to excavate the Lindow Man bog body in the British Museum! I worked with Val on the Baldock and Burton Fleming sites, from 1976 until 1983, first at Baldock, where they had a house next the excavations, and then in the British Museum. She was a wonderful person to work with, kind and ready to share her knowledge (which was extensive) with anyone, the epitome of scholarship.

Val started at the British Museum as Iron Age Research Assistant in the Department of Prehistoric and Romano-British Antiquities in 1977, becoming Curator of the Iron Age collections in 1992, where she stayed until her retirement. She was a great scholar and had a formidable memory and a thorough knowledge of artefacts, metalwork as well as pottery. She specialised in Iron Age artefacts and was particularly keen on Iron Age and Roman brooches and Gallo-Belgic pottery; she was inspired by the objects from King Harry Lane to study Gallo-Belgic stamps.

Since retirement she continued to work; with Jane Timby on a Leverhulme project she helped to produce a website of Gallo-Belgic pottery stamps in Britain (<http://gallobelgic.thehumanjourney.net>). Just 2 years ago I asked for her help with a pendant from Chisenbury midden which I (and others) thought was late Iron Age. Val identified it as La Tène II – as the radiocarbon dates subsequently confirmed!

Figure 1 - Val Rigby in 1966 © Ian Stead.

Val's monographs (as sole author):

2004 *Pots in pits: the British Museum Yorkshire settlement project, 1988 – 92* (*East Riding Archaeologist*, 11).

Monographs co-authored with Ian Stead:

1986 *Baldock: the excavation of a Roman and pre Roman settlement* (Britannia monograph, 7).

1989 *Verulamium: the King Harry Lane site* (HBMC Archaeological Report, no. 12).

1999 *The Morel Collection* (British Museum Press)

2006 (with J.-L. Flouest) *Iron Age and Roman burials in Champagne* (Oxbow)

Acknowledgments

Thanks to Dr Ian Stead for help with this obituary.

Jennifer Foster is an archaeologist who has specialised in the study of artefacts, especially metalwork. She has worked at the British and Ashmolean Museums. She also teaches Continuing Education courses at Oxford.

j.a.a.foster@reading.ac.uk

Figure 2 - Val Rigby in 1996 at Ian's retirement from the British Museum © Ian Stead .

Obituary

Klaus Düwel

Germanic Iron Age and Medieval philologist and runologist

Died December 31st 2020 aged 85.

Elisabeth Maria Magin, University of Nottingham

Internationally recognised as one of the foremost runologist, Klaus Düwel's specialist field of study were South Germanic runic inscriptions, dating between approximately AD 100 and 800. Often found on small objects like brooches, he often collaborated with archaeologists on projects, and is known for his tireless endeavours in acquainting archaeologists with the possibility of runic inscriptions on small finds. Klaus Düwel's interest in runes however did at first not endear him to his international colleagues. As a German specialising in Germanic and Nordic philology, and teaching either at the Georg-August-Universität Göttingen, he initially received a cold reception especially from Scandinavian colleagues, who well remembered the Nazi abuse of runology for their purposes. Düwel's research soon proved he was cast from a different academic mould, and would see him admitted to the Swedish Royal Gustav-Adolf Academy, the Trondheim Scientific Society and the Norwegian Academy of Science and Letters.

Besides publishing four editions of the fundamental reference work "Runenkunde", Düwel was responsible for publishing a range of artefacts dating across the Germanic and Scandinavian Iron Ages and into the Medieval Period. This includes the Almgren 24-26 fibula from Meldorf, Schleswig-Holstein (Figure 2). Dating to as early as the first half of the 1st century AD, the fibula is thought to have originated from a female grave, and provides the earliest possible evidence for both runic script, and an indigenous Iron Age script north of the Pyrenees and Alps. In addition to this Düwel also published numerous other inscriptions and their associated artefacts; shedding important light on the lives and mythology of the wider Germanic speaking world.

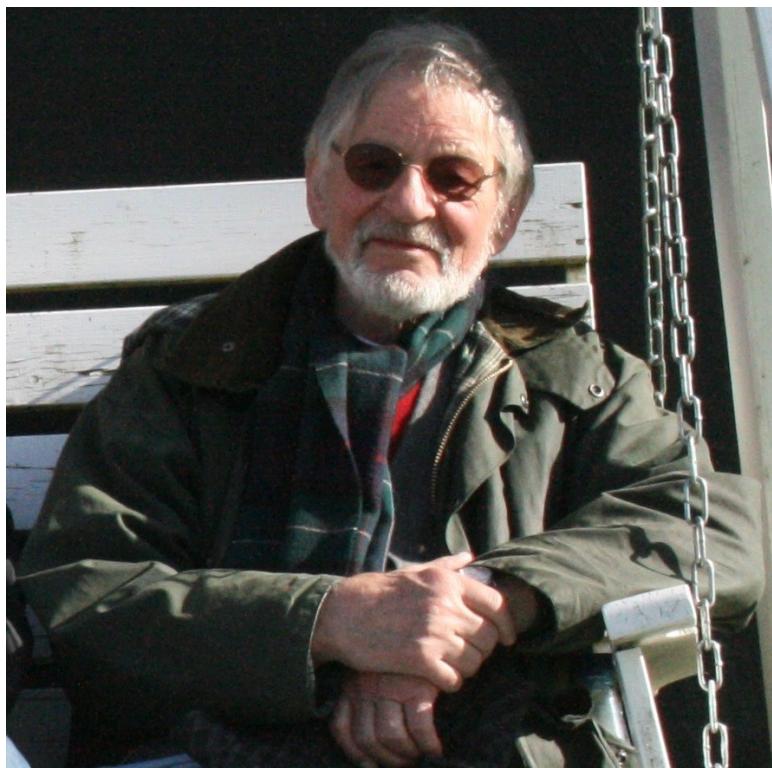


Figure 1 - Klaus Düwel relaxing during a field-trip to Gotland in 2012.

Figure 2 - The Meldorf fibula. The potential runic inscription is visible on the catch-plate © Archäologisches Landesmuseum Schloss Gottorf, Schleswig.

Among colleagues and students, Klaus Düwel was known as a conscientious scholar, interested in a wide variety of topics and with a particular interest in supporting younger scholars in their research endeavours, amongst them the author, who had the pleasure of working with him on his last project for six years. He will be keenly missed.

Elisabeth Maria Magin is a Medieval archaeologist and runologist. She is a former assistant to Prof. Düwel, now attached to the University of Nottingham

Call for Finds: Almgren 65 type brooches

Andrew W. Lamb

The Almgren 65 type is a group of late La Tène brooches known from as far apart as Llubijana, Slovenia and Lincolnshire, England. In Britain it is a well attested type, occurring predominantly in the south-east of England, but also in the English Midlands, West Country and with at least one example known from Wales. It is one of several brooches which form the “fibulae event horizon”; an archaeological phenomenon in which late La Tène brooches are much better attested in the archaeological record than early and middle La Tène examples (Hill 1995, 85).

Although referred to as the Almgren 65 in this call for finds, the type is known by a variety of other names when reported in British publications: Fuègère 8b, Aylesford, Stead 1, Boss on Bow (and the German, French and

Italian equivalents *Knotenfibel*, *Arc Interrompu* and *fibulae ad arpa*, respectively). The primary distinctive feature of the Almgren 65 is the moulded bead/boss which occurs on the bow; a non-functional decorative feature inherited from middle-La Tène types (Figure 1). Other features to identify the type include the use of four springs, and typically an open catch-plate and internal cord. The Almgren 65 is an important fossil-type. In Britain it has been considered as a marker of the Welwyn phase of the Aylesford culture (Stead 1974, 412), whereas on the continent it is seen as a marker of La Tène D1b (Rieckhoff 2008, 6, abb. 3). Originally considered to have been imported from northern Italy on account of the number of known examples from this region (Stead 1974; Buora et al. 1990, 80, fig. 1), it is more likely that the multiple examples from across Europe represent local products according to a common late La Tène schema.

It has been almost fifty years since the British dataset was examined, thereby warranting a reassessment of these fibulae in light of more recent continental discussions. If readers have encountered any examples of Almgren 65 brooches in the course of their research or fieldwork, could they please let Andrew know via his personal email address: andrew.lamb.correspondence@gmail.com

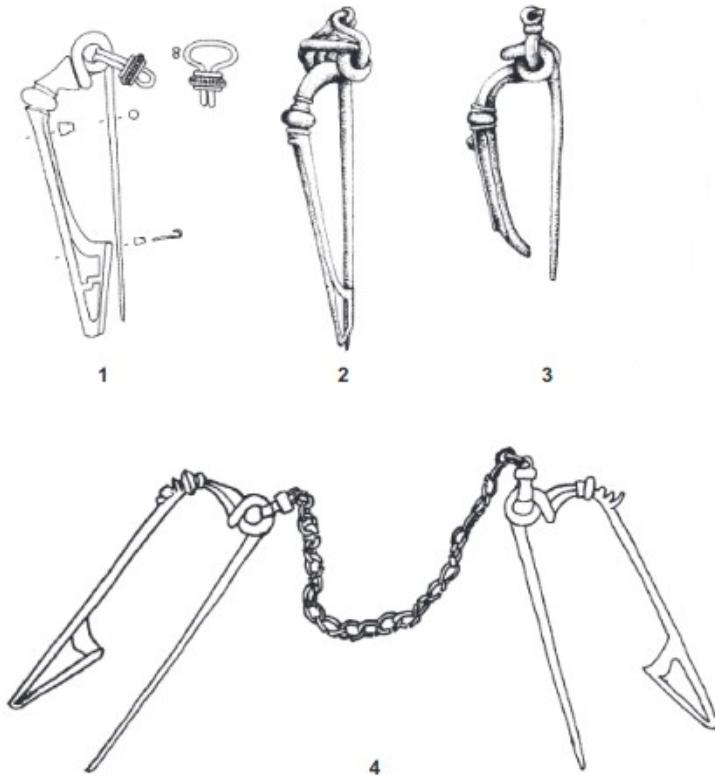


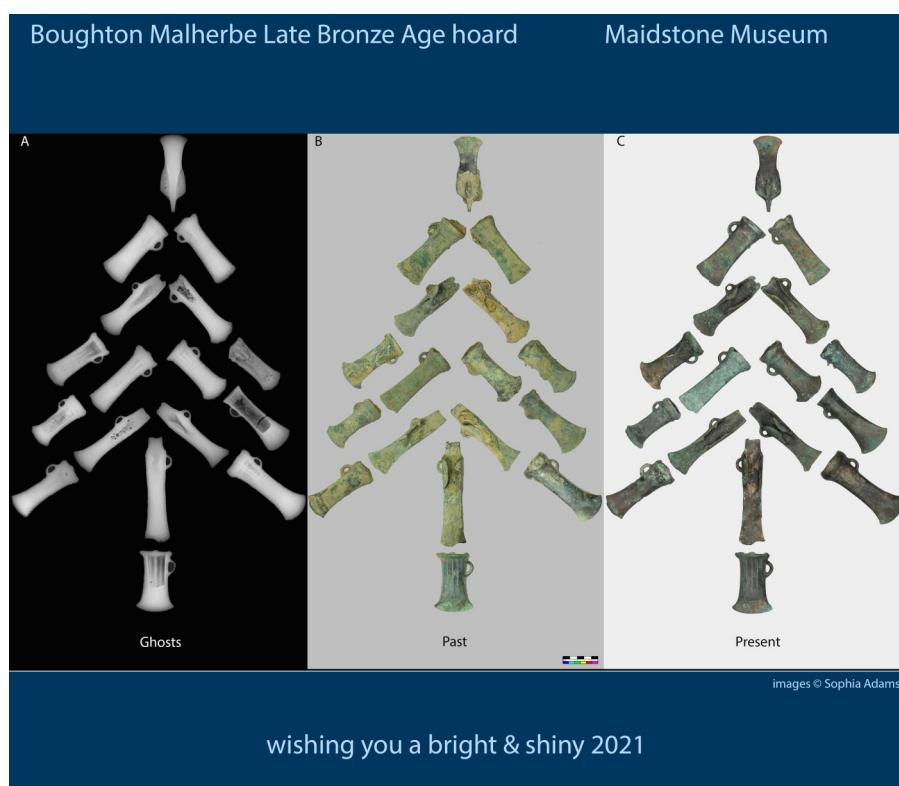
Figure 1 - Examples of Almgren 65 fibulae from (1) Winchester (UK); (2) Ornavasso (I); (3) Câtillon-le-Haut (Jersey); (4) Argentomagus (FR) (after Poux et al. 2007, fig. 10).

References

BUORA, M., CANDUSSIO, A. and DEMETZ, S. 1990. Fibule "as arpa", o del tipo Almgren 65, in Friuli. *Aquileia Nostra* **61**, 77-94

HILL, J.D. 1995. The Pre-Roman Iron Age in Britain and Ireland (ca. 800 B.C. to A.D. 100): An Overview. *Journal of World Prehistory* **1**, 47-98

POUX, M. 2007. Paire de fibules en or du Ier S. AV. J.-C. Autour d'une découverte de l'oppidum de Corent (Puy-de-Dôme). *Gallia* **64**, 1991-225


RIECKHOFF, S. 2008. Geschichte der Chronologie der Späten Eisenzeit in Mitteleuropa und das Paradigma der Kontinuität. Rieckhoff, S., Wolf-Rüdiger, T. and Wolfram, S. (eds). *Leipziger online-Beiträge zur Ur- und Frühgeschichtlichen Archäologie* **30**, 1-11. Leipzig

STEAD, I.M. 1974. The earliest burials of the Aylesford culture. Sieving, G., de Longworth, G., Longworth, I.H. and Wilson, K.E. (eds). *Problems in Social and Economic Archaeology*, 401-416. London: Duckworth

Andrew W. Lamb is the editor for the Later Prehistoric Finds Group.

And a final word from the Bronze Age, courtesy of **Sophia Adams**:

Call for Contributions

We're now accepting contributions for our Summer newsletter. We welcome reviews of conferences and publications, research articles, introductions to new projects, information on new finds, and announcements about events.

Please visit our newsletter page here:
<https://laterprehistoricfinds.com/newsletter/>

Or, email us on lpfgnews@outlook.com to find out more about submitting an article.

Keep up with us online at:
<https://laterprehistoricfinds.com>

E-mail us at:
laterprehistoricfindsgroup@gmail.com

Find us on [Facebook](#)

Or on [Twitter](#): @LtrPrehistFinds